

Design and implementation of a strain- and stress-controlled linear rheometer for advanced rheomicroscopy applications

Nikolaos Kalafatakis and Roberto Cerbino

University of Vienna, Faculty of Physics, Computational and Soft Matter Physics, Boltzmanngasse 5, 1090, Vienna, Austria.

Take home message

We built a cost-effective, precise shear cell for soft materials that can be mounted on any microscope to correlate rheological spectra, mesoscopic shear profiles, and microscopic dynamics.

Setup and Technique

Rheological quantity	Accessible range
Shear stress	1 Pa - 10 ⁴ Pa
Shear strain	1 % - 10 ³ %
Gap	100 um - 1 mm
Frequency	0.001 Hz – 10 Hz
X ₀ h	

PS in DOP, T=23oC Lissajou plots PDMS 998 Pas (Pa) Cell [Pa] £ 1 1 Hz and Lo: St -2000 (o) 10² 96 -3000 S -100 -50 50

S. Villa et al, Frontiers in Physics, 2022

Live (Raw) Data during experiment

Results- Microscopy

Results- Rheology

See also: Edera et al., Yielding under the microscope: a multi-scale perspective on brittle and ductile behaviors in oscillatory shear, arXiv, 2024

2000

1000

-1000

-2000

Conclusions

- We built a simple but robust strain-controlled shear cell
- The quality of the rheological data is equivalent to the one collected with a commercial rheometer
- Imaging coupled with rheology allows us to study processes (flow instabilities, microscopic dynamics) occurring at different levels within the sample
- We can measure the true, local strain in the presence of -shear induced- flow non-idealities

Contact: nikolaos.kalafatakis@univie.ac.at

References:

[1] Villa et al. *Frontiers in Physics*, 2022 [2] Aime et al. *Review of Scientific Instruments*, 2016 [3] Edera et al., Yielding under the microscope: a multi-scale perspective on brittle and ductile behaviors in oscillatory shear, arXiv, 2024